You are here: Home » Healthcare » Insight Hub » White Papers
View or download our white papers here. All white papers are freely available to registered users.
In this white paper, Aia Malik, Commercial Development Manager, Healthcare, and Gilda Gasparini, senior Chemical Engineer, discuss the journey behind Lucideon's proprietary iCRT-deter technology. iCRT is a novel series of carriers based on inorganic materials, designed to enhance the delivery of APIs by providing protection of actives and improved stability. iCRT-deter, one of the technologies in this platform, applies all these features, including controlled release to provide protection of high dose or addictive drug formulations, including opioids. This paper will review the escalating prescription abuse problem, Abuse Deterrent Formulation (ADF) drivers and the key factors that shaped the design of iCRT-deter.
The surface characterisation of hair fibres can deliver important insights into the performance of hair care products and in the development of improved product formulations based on an understanding of the connection between product use and the resulting surface properties of the treated hair fibres. This paper reviews the range of relevant hair properties together with the use of topographical and chemical surface characterisation techniques for their determination. Non-contact white light interferometry and 3D scanning electron microscopy are used to investigate topographical consequences such as scale height and hair damage. These techniques provide statistically based metrology of hair surfaces either parametrically or as quantified 3D images. In addition we describe the application of chemical surface analysis techniques including X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) to the determination of chemical residues and natural substrates in terms of material identification, level quantification and spatial distribution. In all cases practical applications are described.
Every product on the market has made the journey from concept to commercialization. For each product that makes it, there are many that fall through the net during the process.
One of the key stumbling blocks is the move from feasibility study to sustainable production via a demonstration (or pilot) plant. Scale-up requires an extremely wide range of skills: scientists, engineers, regulatory and business managers need to work together to develop and deliver a plan that meets technical and commercial targets. This paper gives an overview of the scale up process, highlighting possible drawbacks and best practice.
Nosocomial infections (hospital acquired infections) are a major threat to patient safety and are often preventable. One significant source of such infections are contaminated medical devices used during surgeries and other clinical procedures. In an attempt to minimize this particular source of infection, regulatory authorities require medical device manufacturers to ensure that the recommended cleaning and sterilization procedures used in the reprocessing of such devices are fully validated and shown to be effective.
This paper sets out to affirm the value of material characterisation in product and process development activities in technology based industries, whilst sustaining the quality of manufacturing output. A selection of techniques, applications and case studies, relevant to a wide range of industry sectors is covered.
Chemical imaging is a powerful tool that can be applied to a wide variety of applications. Time-of-Flight Secondary Ion Mass Spectrometry (ToFSIMS) is an advanced technique that provides information about the chemistry of the surface of samples and allows analysts to also spatially map the chemistry of the surface. To obtain a more in-depth profile of analytes, ToFSIMS is often used in conjunction with other surface analysis techniques but, as a standalone technique, it still offers valuable insight into the surfaces of materials. This white paper will discuss the power of ToFSIMS across a range of different industries and materials and the specific information and value provided.
Fatigue is a major failure mode for metal components, in commercial, industrial and research environments, and can have catastrophic consequences. Understanding the mechanisms behind fatigue failures, and knowing how to handle samples after they have failed in fatigue, is essential for engineers to perform effective analysis.
SUS can make it easier for pharmaceutical manufacturers in terms of process operation and minimizing risk of contamination. Downtime can also be greatly reduced as SUS components are delivered ready for use, and are designed so that one component can quickly be interchanged with another, clean replacement, between runs or when changing to a different product on the same line.
SUS do however still pose challenges themselves, which need careful planning and consideration to maximize the benefit from them whilst ensuring patient safety and product integrity.
In this paper we will discuss some of the testing and validation considerations that pharmaceutical manufacturers should look at when implementing SUS, as well as other factors that can help them to optimize their usage.
The extensive application of polymer materials nowadays is inevitably accompanied by the occurrence of product failure, which is costly for all organizations involved. The consequence of failure varies from loss of asset and brand credibility, to costly legal disputes, and catastrophic human casualties. This paper provides some insights into the failure of plastic products and gives an introduction to some of the analytical techniques commonly used in failure diagnosis. An understanding of the background knowledge of plastic materials and the methods generally adopted when conducting a failure analysis will help to not only investigate a failure, but can also determine the right corrective solutions.
The development of revolutionary products, the meeting of legislative requirements or the replacement of raw materials phased out by third party suppliers are just some of the critical reasons that device engineers may seek new or alternative materials. The unique and immeasurably diverse range of materials available for medical devices offers many possibilities for design and function. In this white paper, we demonstrate the risk of working with the wrong material, highlight the upside when the right material is selected, and outline what the selection process looks like. In addition to material selection, we also look at material processing and discuss how understanding how the two are unified in the actual design and function of the process is the ultimate key to success.
In this white paper, we will take a look at Additive Manufacturing from the metallurgical perspective. As with any other manufacturing process, different materials provide different benefits for particular applications. We will discuss the advantages and disadvantages of AM at each of the three main manufacturing stages: pre-processing, processing and post-processing. We will also discuss some typical component applications that this new manufacturing process is being used for, and all the metallurgical issues involved.
The current ISO standards for both hip (ISO 14242) and knee (ISO 14243) wear simulation provide well-defined loading and displacement conditions for anatomical joint loading and motion during typical gait. However, a few areas in the ISO standards lack additional information which makes it a challenge to design and implement a comprehensive pre-clinical wear testing program. Researchers in the wear testing field have suggestions regarding ambiguous directions in the ISO standard. The following information offers additional guidance that could help support implant manufacturers in their decision-making and justifications for regulatory submissions.
In this paper we will discuss the sol-gel process for making ceramics and glasses. We will describe the main differences between sol-gel and traditional methods for making these types of materials and the advantages to be gained through utilizing the sol-gel method. The primary benefit of using a sol-gel method is that it enables the synthesis of inorganic materials at relatively low temperatures, in contrast to more traditional methods of making ceramic and glass products. This in turn offers advantages that are being exploited to develop innovative and applied technologies in a wide variety of industrial sectors. This white paper will focus primarily on the applications for new Healthcare materials technologies.
From the start of 2018 the outdated United States Pharmacopeia (USP) <231> limit test for heavy metals, which has been in use for more than a century, will be replaced by USP <232> which provides individual limits for specific elements, with the test methods given in USP <233>.
To avoid any confusion, USP chapter <232> became official on the 1st of December 2015, but until the 1st of January 2018 it is acceptable to use either the current limit test, or implement the new test. After 1st January 2018 testing must be to the new chapter. Those still using the limit test by then may find themselves caught-out and unable to show their product’s compliance.
Tooth enamel is an extremely strong material, the strongest tissue in the human body, but it has to withstand a lot of physical, mechanical and chemical attack on a day-to-day basis. If the enamel wears then teeth can become sensitive which causes pain and discomfort and also leads to a higher risk of tooth decay, or caries. Even after a tooth is filled there is still a risk of caries developing at the tooth/filling interface. Various solutions to these issues have been developed and researched, ranging from total physical replacement for teeth through to repair of damaged tooth areas and preventative solutions such as bioactive materials to strengthen or restore the tooth enamel in the first instance. In this paper we will discuss what role inorganics can play in restoring and maintaining tooth functionality and the advantages that inorganics can provide in this area for developing technologies.
Over the last 10 years advances in high resolution imaging of both topographical features and chemical species’ distribution have been applied increasingly in the characterisation of commercially important surfaces such as hair fibres, teeth, skin and textiles. These capabilities have been used extensively to inform both the development of products and the proof of efficacy in support of performance claims for clients in several areas of the Home Care and Consumer Healthcare sectors. In this paper we describe some of these techniques and give examples of how they have been exploited in practice, from evaluating the level of protection afforded by oral health products to measuring the efficacy of skin and hair products, such as anti-wrinkle applications and conditioners.
Surface engineering, or surface treatment, can be defined as the design of surface composition and substrate together as a functionally graded system to give a cost effective performance enhancement of which neither is capable on its own - or, more simply, as altering the surface for advantage. This includes both physical and chemical treatments, applied coatings, including multilayer coatings, and the chemical and physical characterization of the affected surface zone. In this paper we will review some of the industrial applications of surface engineering and the techniques used to define the topography and chemical composition of the surface and subsurface regions.
Wear simulation for implantable knee, hip and intervertebral spinal disc prostheses have all been well documented and standardized tests methods have been created in order to assess the performance of these medical device implants. Despite the fundamental developments in wear testing for hip, knee and spine implants there has been little focus on extremity wear testing for other medical implants. Current knowledge of wear performance in Total Ankle Replacements (TAR) and Total Shoulder Replacements (TSR) is limited which has resulted in the need for more detailed examination of the performance of these implants both under in-vivo conditions and in the laboratory.
Digital Image Correlation (DIC) is a non-contact, non-interferometric measurement technique that uses high-resolution machine-vision digital cameras to accurately measure surface deformation in two or three dimensions. This measurement is presented graphically in a number of ways such as a 2D strain map overlaying the test specimen, or a 3D displacement map showing the specimen surface and how it moves throughout the test. Early development of this technology began in the mid-1980s in the mechanical engineering department of the University of South Carolina. Since then it has gone on to revolutionize mechanical testing on both the macro and micro scale. The applications of DIC are vast, from eyeball pressure testing to earthquake analysis; this adaptable and highly capable system will transform design, validation and testing methods for anything from dental implants to wind turbines.
With increased pressure from regulatory bodies demanding stringent testing throughout the design, validation and manufacturing phases of healthcare product development, test methods are becoming increasingly complex. Digital Image Correlation (DIC), offers in depth analysis, in a simple yet efficient and comprehensive manner.
Using high powered digital cameras and the latest high-tech software DIC provides visual and quantitative analysis of surface strains of materials and products undergoing stress testing. Highlighting the areas of high strain informs the response of a component under various loading conditions in a non-destructive way, characterizes mechanical behavior and can verify and refine finite element analysis models.
The concept of Quality by Design (QbD) is not a new idea but it is only in recent years that it has been considered for all aspects of the development process for pharmaceutical products. Even with this recent growth in interest, it can often be seen an unattractive prospect, for the reasons outlined below, and is not yet considered standard for the development of drugs and pharmaceuticals.
For those though that have taken the plunge and invested the time in developing analytical methodology for their products using QbD techniques, the advantages are being realized, reinforcing the future of QbD.
The current success, as applied to analytical test methods, relies heavily on a significant investment in laboratory time during the early stages of a product’s life cycle. For many, spending vital time designing a method from scratch instead of it being developed from a template of a similar product seems too time consuming and counterproductive. The time spent on design does, however, offer many advantages in terms of quality control and understanding of the methodology; this, in itself, provides long-term time and cost advantages.
For decades, total hip and knee replacement surgery has been successful in restoring the normal function of articulating joints. Whether the joint has been damaged through injury or as a result of arthritis, total joint replacements are some of the most common and successful orthopedic surgeries in the world.
With approximately 160,000 total hip and knee replacements being performed in over 400 hospitals each year in the UK alone, and that number set to rise by 673 percent in the next 20 years, the design of implants, as well as the materials used in them, has become the focus of many large multinational companies. The resulting technological evolution and concurrent influx of innovative devices have increased the demand for both device and materials testing solutions.
In this white paper we will look at why the testing of implants is so important. Traditional test methods and their limitations will be detailed and adverse event testing, including impingement testing and third body wear testing will be discussed.
The CDC (Centres for Disease Control and Prevention) now considers prescription drug abuse in the US an epidemic. Abuse in these cases can be defined as the intentional misuse of pharmaceuticals to deliver a desirable physiological and psychological effect. These drugs are abused via several known routes, including chemical tampering or crushing followed by insufflation, intravenous intake or via oral abuse, using greater than prescribed doses.
Driven by public health, governmental and regulatory bodies, such as the Food and Drug Administration (FDA), vast investment has already been made into reduction of abuse and misuse of prescription drugs. The abuse deterrence of prescriptions, particularly in the case of opioids, is a key area of concern and, as a result, a growing market has emerged.
This paper explores the market drivers for abuse deterrence and identify possible solutions.
Composites are being used more and more in many different industries, thanks to the enhanced properties that are realised from the combining of materials.
In this guide we will look at what composites are, highlighting their advantages and explaining how they work. We will also consider how to design with composites and how to test composites and components to ensure that they perform to the best of their ability.
The orthopedic implant industry is in a continual state of development, witnessing an explosion of novel materials, designs, and applications. This process is, however, often laced with challenges and articulating joints can present the greatest number of these. The biocompatibility of an orthopedic implant is essential but, as an increased number of patients outlive the life expectancy of their implant; longevity is becoming a significant clinical problem. Thus, the bio-tribological performance of an implant becomes increasingly relevant.
Bio-tribology is the study of friction, lubrication and wear as they occur in the human body and, as such, are all important factors to consider in the design of implants. Assessment of an implant covers three areas - mechanical testing, debris analysis and surface analysis. In this paper we will review the key techniques available, focusing on the value of generating a complete picture and an understanding of an orthopedic implant in terms of how the design, base material or coating behaves under friction and loading.