THERMAL ANALYSIS CAPABILITIES Lucideon uses state-of-the-art TA thermal analysis instruments to determine the thermal and thermomechanical properties of a wide variety of materials to characterize composition, verify material properties, assess fit for applications, troubleshoot production issues, qualify processing changes, identify the differences between materials and perform failure analysis. | Method | Specimens | Temp.
(°C) | Common Applications | | |--|--|---|--|---| | Differential Scanning Calorimetry (DSC) Thermomechanical Analysis | Maximum dimensions: Cylinder 10 mm (d) x 26 mm (l) Film/Fiber 26 mm (l) x 4.7 mm (w) x 10 mm (t) | (-150)
to
700
(-150)
to
700 | Melting/freezing/crystallization Glass transition temperature Percent crystallinity Melting/freezing point Softening/melting behavior Glass transition temperature Coefficient of Thermal Expansion Shrinkage | Heat of fusion Specific Heat Capacity Modulated DSC Penetration Deflection/distortion temperatures Compression/tension 3 point bend/flexure Multi-layer film | | Simultaneous DSC | | DTA | | analysis | | Differential Thermal Analysis (DTA) Thermogravimetric Analysis (TGA) | Maximum:
200 mg
Sample
pans:
40 µl
or
110 µl | 200
to
1500
RT
to
1500
RT
to
1500 | temperature crystallization - Polymorphic phase transitions - Filler/residual content - Solidus/liquidus - Volatiles analysis | Filler/residual contentVolatiles analysis | | Differential
Scanning
Calorimetry (DSC) | | | Braze/solder melting/
crystallization
properties Degradation/
decomposition profiles Oxidation behavior Characterization of
cure reactions Moisture content | Quantitative compositional analysis Effect of additives Kinetics/activation energy Enthalpy & Instantaneous weight loss measurements |